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Motivated by recent experimental results obtained in a low-Prandtl-number fluid
(Jaletzky 1999), we study theoretically the rotating cylindrical annulus model with
rigid boundary conditions. A boundary layer theory is presented which allows a
systematic study of the linear properties of the system in the asymptotic regime of
very fast rotation rates. It shows that the Stewartson layers have a (de)stabilizing
influence at (high) low Prandtl numbers. In the weakly nonlinear regime and for low
Prandtl numbers, a strong retrograde mean flow develops at quadratic order. The
Poiseuille part of this mean flow is determined by an equation obtained by averaging
of the Navier–Stokes equation. It thus gives rise to a new global-coupling term in
the envelope equation describing modulated waves, which can be used for other
systems. The influence of this global-coupling term on the sideband instabilities of the
waves is studied. In the strongly nonlinear regime, the waves restabilize against these
instabilities at small rotation rates, but they are destabilized by a short-wavelength
mode at larger rotation rates. We also find an inversion in the dependence of the
amplitude on the Rayleigh number at low Prandtl numbers and intermediate rotation
rates.

1. Introduction
The problem of convection driven by radial buoyancy in a rotating cylindrical

annulus incorporates some basic physical features of the more complex problem of
convection in self-gravitating rotating fluid spheres which is of fundamental impor-
tance in theories of planetary interiors and of stars. In fact, it can be shown that
the simplest realistic model of the onset of convection in such systems (Busse 1970)
is mathematically identical to the problem of convection in a rotating cylindrical
annulus with inclined end boundaries (figure 1). In both cases the onset occurs in
the form of thermal Rossby waves which propagate in the prograde direction. From
this similarity of the two problems at onset, it can be expected that an analogy
will persist in the nonlinear regime; this has for instance been used to investigate
the generation of strong zonal flows in celestial bodies (Brummell & Hart 1993).
The rotating cylindrical annulus model is also of interest as a basic fluid dynamical
system, that can be studied in the laboratory. In the experimental realizations (see
e.g. Azouni, Bolton & Busse 1986) the centrifugal force assumes the role of gravity.
The annular fluid layer thus becomes unstable when the outer cylinder is kept at
a temperature T2 sufficiently higher than the temperature T1 of the inner cylinder.
While the direction of the force is opposite to that realized in self-gravitating spheres,
the buoyancy-driven motions occur in the same way as in the case when force and
temperature gradient are reversed.
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Figure 1. The rotating cylindrical annulus geometry.

Besides the Rayleigh number R and the Coriolis parameter η, which are dimension-
less measures of the temperature difference between inner and outer cylinder and of
the rotation rate Ω, respectively, the Prandtl number P , the ratio between kinematic
viscosity ν and thermal diffusivity κ, is an important parameter. In planetary and stel-
lar applications, it takes values much smaller than unity. For this reason experimental
(Azouni et al. 1986; Jaletzky 1999) as well as theoretical studies (Herrmann & Busse
1997, hereinafter referred to as HB97) have focused on the case of small Prandtl
number. For reasons of mathematical simplicity, stress-free or slip conditions at the
cylindrical walls have been assumed in most theoretical studies. As a consequence
singular behaviour in the limit P → 0 is found, and modulated or chaotic states have
been predicted (HB97). These were not seen, however, in the recent experiments by
Jaletzky (1999). For this reason a detailed theoretical study of the rotating cylindrical
annulus model with realistic no-slip boundary conditions has been undertaken, which
is presented in this paper.

After the formulation of the model in § 2, its linear properties are studied in § 3. An
analytical theory is derived to approximate the linear no-slip solutions in the limit
of large η, and the corresponding Stewartson layers are analysed. In § 4 the weakly
nonlinear dynamics is described on the basis of a new envelope equation (4.20). In
particular, the global-coupling role of a Poiseuille mean flow generated at quadratic
order in the no-slip case is emphasized. Finally, in § 5 a Galerkin method is used to
obtain numerical results for the fully nonlinear no-slip problem.

2. The rotating cylindrical annulus model
For a detailed presentation of the rotating cylindrical annulus model we refer the

reader to Busse & Or (1986, hereinafter referred to as BO86). The geometry of the
problem is defined in figure 1. The gap d between inner and outer cylinder is used
as length scale, d2/ν as time scale, P (T2 − T1) as temperature scale. The Rayleigh
number R and the Coriolis parameter η are

R = γgd3(T2 − T1)/(κν) and η = 2Ωη0d
3/(hν),
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with γ the coefficient of thermal expansion, g = Ω2r0 the centrifugal acceleration
at the mean radius r0 of the annular region, and η0 the slope of the conical caps.
Note that η is proportional to the inverse of the Ekman number E = ν/(d2Ω).
Because of the small-gap approximation d � r0, curvature effects can be neglected
and a Cartesian coordinate system x, y, z can be introduced. The annulus is thus
unfolded to the domain {x ∈ [−1/2, 1/2], y ∈ [−L/2, L/2], z ∈ [−h/d, h/d]} with
L = 2πr0/d � 1. Accordingly periodic boundary conditions are to be used in the
y-direction. The Boussinesq approximation is assumed. Because of the assumption
η0 � 1 and of the Proudman–Taylor constraint, the velocity field is z-independent in
the lowest approximation,

v = (∂yψ)x̂− (∂xψ)ŷ, (2.1)

with the streamfunction ψ(x, y, t). Integration over z of the equation for the z-
component of the vorticity, ζ = −∆2ψ, and elimination of the z-component of the
velocity through the use of the boundary conditions at the conical caps yields an
equation for ζ. Together with the heat equation for the deviation θ(x, y, t) of the
temperature from the basic profile of pure conduction, we obtain

∂tζ + v · ∇ζ + ηvx = ∆2ζ + R∂yθ, (2.2a)

P (∂tθ + v · ∇θ) = ∆2θ − vx, (2.2b)

where ∆2 = ∂2
x + ∂2

y . Introducing the ‘local state vector’ of the fluid, V = (ψ, θ), we
rewrite these basic equations as

D · ∂tV + N2(V , V ) = LR · V , (2.2)

with the linear operators D and LR and the nonlinear one N2. Assuming isothermal
cylindrical walls we have as boundary conditions either

∂yψ = ∂2
xψ = θ = 0 at x = ±1/2 in the stress-free case, (2.3a)

or

∂yψ = ∂xψ = θ = 0 at x = ±1/2 in the no-slip case. (2.3b)

Because of the annular geometry, the model allows for a non-vanishing mean flow
vy , where the bar indicates the average over the y-direction. To ensure the periodicity
of the pressure in the y-direction, one must supplement the local vorticity equation
(2.2a) with the average over y of the azimuthal component of the Navier–Stokes
equation,

∂tvy + vx∂xvy = ∂2
xvy, i.e. − ∂t∂xψ + vx∂xvy = −∂3

xψ. (2.4)

The x-derivative of this equation is identical to the y-average of equation (2.2a).

3. Asymptotic theory for the onset of convection
The stability analysis of the purely conductive state, V = 0, can be performed

through the solution of the linearized eigenvalue problem

σD · V = LR · V , (3.1)

with the boundary conditions (2.3). Because of the periodicity y 7→ y + L, the eigen-
modes are Fourier modes, exp(iαy). In accordance with the small-gap approximation
α is regarded as a continuous parameter. Solutions of (3.1) corresponding to a van-
ishing real part of σ, σ = −iω(α), are obtained for R = R(α) and called neutral
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modes V = V1(α). The Rayleigh number R(α) takes its minimum at the critical value
Rc corresponding to the critical wavenumber αc and the critical frequency ωc. Since
ωc > 0 for η > 0, these modes correspond to progradely travelling thermal Rossby
waves.

While explicit analytical solutions of the linear problem (2.3), (3.1) can be obtained
in the stress-free case (BO86), only numerical solutions have been obtained in the
no-slip case (Schnaubelt & Busse 1992). Numerical difficulties are encountered at
large η, which become more dramatic at small P . However, since αc increases with η,
the differences of the solutions for the two types (2.3) of boundary conditions should
disappear asymptotically for large η as has already been anticipated by Busse (1970).
In order to study this convergence in detail, we first recall in § 3.1 the stress-free linear
solutions, before presenting in § 3.2 an asymptotic calculation of the no-slip neutral
wave at a prescribed wavenumber α0. The results will be discussed in § 3.3.

3.1. Linear solution in the stress-free case

As shown in BO86, in the stress-free case the thermal Rossby wave

ψ = cos(πx) exp[i(αy−ωsf(α)t)], θ =
−iα cos(πx)

α2 + π2 − iωsf(α)P
exp[i(αy−ωsf(α)t)] (3.2)

with the frequency

ωsf(α) =

√
2ηp
P

α

π2 + α2
, where ηp =

ηP√
2(1 + P )

has been defined, (3.3)

is neutral at the Rayleigh number

Rsf(α) =
(π2 + α2)3

α2
+

2η2
p

π2 + α2
. (3.4)

In the limit of large ηp, the critical wavenumber αc minimizing Rsf(α) approaches the

value α0 = η
1/3
p corresponding to Rsf(α0) ∼ 3η

4/3
p and ωsf(α0) ∼

√
2P−1η

2/3
p .

3.2. Asymptotic solution for the no-slip case

The no-slip neutral mode with wavenumber α0 can be written in the form

ψ = Ψ1(x; α0) exp[i(α0y − ωns(α0)t)], θ = Θ1(x; α0) exp[i(α0y − ωns(α0)t)]. (3.5)

After elimination of Θ1 through the use of the linearized vorticity equation, the
linearized heat equation (2.2b) gives an ordinary differential equation of sixth order
for Ψ1(x), the solutions of which take the form

Ψ1(x) = A cosh(λx) + A+ cosh(λ+x) + A− cosh(λ−x). (3.6)

In the large-ηp limit, the characteristic polynomial yields two large roots λ± which
behave asymptotically as

λ± ∼ η1/3
p

√
Λ± (3.7a)

with

Λ± =
3− i
√

2(1 + P−1)

2
±
√
δ

2
and δ = −5+4P−1−2P−2−2i

√
2(1+P−1), (3.7b)

and a small root λ which can be regarded as a perturbation of the stress-free value,

λ = iπ+ µ with µ ∼ Pη
−2/3
p R1 + P [(P − 1)

√
2− (1 + P ) i]ω1

2π[(1 + P )
√

2 + (3P − 2) i]
, (3.8a)



Convection in a rotating cylindrical annulus 349

108

107

106

105

104

103

102

10–2 10–1 100 101 102 103 104

P

è

Figure 2. The thin lines show the predictions of the asymptotic theory concerning the limit value
of η above which the no-slip onset value Rns(α0) has converged to the stress-free asymptotic onset
value R0, using the convergence criterion |δR/R| < 10−3 with equation (3.12) on the right (large
Prandtl numbers), (3.15) on the left (small Prandtl numbers). The thick line shows the results of the
numerical solution of the no-slip linear eigenvalue problem.

where the definitions

R1 = Rns(α0)− Rsf(α0) with R1 � Rsf(α0), (3.8b)

ω1 = ωns(α0)− ωsf(α0) with ω1 � ωsf(α0) (3.8c)

have been introduced. Since the real parts Re(λ±) are large, the solution (3.6) satisfying
the no-slip boundary conditions takes asymptotically the form

Ψ1(x) ∼ (λ+ − λ−) cosh(λx) + 2 exp(−λ+/2)[λ− cosh(λ/2)− λ sinh(λ/2)] cosh(λ+x)

+2 exp(−λ−/2)[λ sinh(λ/2)− λ+ cosh(λ/2)] cosh(λ−x). (3.9)

Eventually the isothermal boundary condition gives at leading order a complex
equation of the form bRR1 + bωω1 = b0 from which R1 and ω1 can be calculated.
Because of their complex dependence on P (see e.g. (3.7)), the explicit general
analytical expressions are lengthy and will not be given here. Instead we shall focus
on the limits of small and large Prandtl numbers, which cover most of the regions of
interest as is evident from figure 2.

3.3. Comparison of stress-free and no-slip results – discussion

In the large-Prandtl-numbers limit one finds

Λ± = (3− i
√

2±
√
−5− 2i

√
2)/2, µ ∼ (1.67 + 5.05 i)η−1/3, (3.10)

R1 ∼ −22.0η1/3, ω1 ∼ −76.4P−1η−1/3, (3.11)

i.e. the boundary layers are destabilizing. Exact algebraic expressions can be given for
µ, R1 and ω1, but they are still too lengthy to be displayed. From (3.8c) and (3.11)
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one deduces the relative corrections to the neutral Rayleigh number and frequency,

δR

R
=

R1

Rsf(α0)
∼ −11.6η−1,

δω

ω
=

ω1

ωsf(α0)
∼ 68.0η−1. (3.12)

Thus the convergence of the no-slip linear properties towards the stress-free linear
properties occurs independently of P for large P . As shown in figure 2, this prediction
is confirmed by the fully numerical solution of (3.1) obtained through the use of
superpositions of modes with exp(λx) for Ψ1(x) and Θ1(x) or through the use of a
Galerkin scheme (see § 5). Moreover, the neutral wave profiles deduced from (3.9)
agree well with the profiles computed numerically. The fact that λ± scale with η1/3

indicates that a Stewartson layer (Greenspan 1968) of thickness lx ∼ η−1/3 develops
in the vy field.

In the small-Prandtl-numbers limit one finds

Λ+ = 1− i
√

2, Λ− = −i
√

2P−1, µ ∼ 25/12π(i− 1)P 1/6η−1/3, (3.13)

R1 ∼ 3× 219/12π2P−1/6η1/3, ω1 ∼ −223/12(1 +
√

2)π2P−5/6η−1/3, (3.14)

i.e. the boundary layers are stabilizing. Accordingly the relative corrections to the
neutral Rayleigh number and frequency are

δR

R
∼ 29/4π2P−3/2η−1,

δω

ω
∼ −27/4(1 +

√
2)π2P−1/2η−1. (3.15)

As P approaches zero, the Coriolis parameter η thus must reach extremely high
values to ensure the convergence of the no-slip and the stress-free linear properties,
in agreement with the fully numerical computations (figure 2). A salient feature is
the Prandtl number dependence of the root Λ−, which implies that λ− ∼ P−1/6η1/3.
For small Prandtl numbers a thermally modified Stewartson layer of thickness lx ∼
P 1/6η−1/3 thus develops in the vy field. This delayed convergence at small Prandtl
numbers is caused by the relatively low values of the wavenumber α0: the larger the
wavelength, the stronger the influence of the boundary conditions.

The calculations presented here are similar to those performed for rotating Rayleigh–
Bénard convection by Clune & Knobloch (1993) and by Zhang & Roberts (1998).
In addition to the Stewartson layers at the cylindrical walls the Ekman layers at the
conical caps of the annulus can also be considered, as has been done by Busse (1970)
and Zhang & Jones (1993). The changes in the critical Rayleigh numbers due to
Ekman layers and Stewartson layers are in fact additive and thus can be considered
independently. Equation (4.9) of Zhang & Jones (1993) shows that the Ekman layers
also have a stabilizing effect at small Prandtl numbers and a destabilizing effect at
large Prandtl numbers. A comparison with our equations (3.12) and (3.15) proves
that in the asymptotic regime the Stewartson layers play a more important role than
the Ekman layers when the inequalities

((1 + P )/P )3/2 � η � η
3/5
0 (h/d)1/5(1 + P )/P (3.16)

are satisfied, which can be realized for long cylinders with h� d.

4. Weakly nonlinear dynamics: envelope equation
In order to study the nonlinear dynamics of the system near onset, i.e. for 0 <

ε = R/Rc− 1� 1, we construct the Ginzburg–Landau or envelope equation with the
spectral method as reviewed for instance by Dangelmayr & Kramer (1998).
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4.1. Construction of the envelope equation

A general wave packet ansatz has the form

W =

∫
V(0)

dqÂ(αc + q)V1(αc + q) exp(−iωct) ∼ A(y)V1(αc) exp(−iωct), (4.1)

where V(0) indicates the set of the small wavenumbers q � αc and

A(y) =

∫
V(0)

dqÂ(αc + q) exp(iqy) (4.2)

is the slowly varying envelope. Approximate solutions of the evolution equations (2.2)
and (2.4) of the form

V = W +W ∗ + V⊥ (4.3)

are sought, with V⊥, regarded as a perturbation of W , in the passive modes subspace
generated by the eigenmodes of (3.1) with finite negative growth rate Re(σ). This
allows an adiabatic elimination of V⊥ at the order A2.

Accordingly, the nonlinear source terms of wavenumbers close to ±2αc in (2.2)
generate the terms

A2(y)V2(αc, αc) exp(−2iωct) + c.c. (4.4)

in V⊥, with

V2(αc, αc) = (2iωcD + LRc)
−1 ·N2(V1(αc)|V1(αc))

using the notation

N2(Va|Vb) = N2(Va, Vb) + N2(Vb, Va).

In a similar way, the slowly modulated streamfunction ψ2 in V⊥ is controlled by
the equations deduced from (2.2a) and (2.4),

N2ψ(W |W ∗) = |A(y)|2S ′(x) = −∂4
xψ2, (4.5)

vx∂xvy(W |W ∗) = |A(y)|2S(x) = −∂3
xψ2, (4.6)

where

S(x) = 2αcIm[Ψ1(x; αc)∂
2
xΨ

∗
1 (x; αc)] = 2αcIm∂x[Ψ1(x; αc)∂xΨ

∗
1 (x; αc)]. (4.7)

Separating ψ2 into its mean and fluctuating contributions, ψ2 = ψ̄2 +ϕ2 with ϕ̄2 = 0,
subtracting ∂x(4.6) from (4.5) yields

[|A(y)|2 − |A(y)|2]S ′(x) = −∂4
xϕ2. (4.8)

In the stress-free case where, according to (3.2), Ψ1(x; αc) = cos(πx) is real, S vanishes,
and therefore ψ2 = 0, i.e. there is no large-scale flow at this order. In the no-slip
case, however, Ψ1(x; αc) is complex once η 6= 0, which means that the boundaries of
the convection cells at a given instant of time are no longer lines y = constant (see
figure 5). Thus S(x) is non-vanishing once η 6= 0. The solution of (4.8) subject to the
no-slip boundary conditions (2.3b) yields

ϕ2 = [|A(y)|2 − |A(y)|2]Ψ2(x) (4.9)

with Ψ ′′′′2 (x) = −S ′(x), Ψ2(±1/2) = Ψ ′2(±1/2) = 0. The comparison of (4.6) and (4.8)
then shows that, since ∂xψ2 must vanish at x = ±1/2,

ψ̄2 = |A(y)|2 [Ψ2(x) +M2(4x
3/3− x)], (4.10)
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where the value of M2 can be deduced after averaging (4.6) over the x-direction, as
indicated by angular brackets,

M2 = − 1
8
〈Ψ ′′′2 (x)〉 = − 1

4
Ψ ′′2 ( 1

2
) (4.11)

since Ψ2(x) is odd. Summing (4.9) and (4.10), one finds

ψ2 = |A(y)|2Ψ2(x) + |A(y)|2 M2(4x
3/3− x), (4.12)

corresponding to the superposition of a typically -if A(y) does depend on y- ‘modulated’
mean flow on top of a ‘global’ Poiseuille mean-flow.

The slowly modulated temperature field θ2 in V⊥ is controlled by the equation
deduced from (2.2b):

∂2
xθ2 = N2θ(W |W ∗) = |A(y)|2 N2θ(V1(αc)|V1(−αc))

which yields

θ2 = |A(y)|2Θ2(x). (4.13)

Introducing the vectors

V2(αc,−αc) = (Ψ2(x), Θ2(x)) and Vgm = M2(4x
3/3− x, 0),

one can combine (4.4), (4.12) and (4.13) to give

V⊥ = [A2(y)V2(αc, αc) exp(−2iωct) + c.c.] + |A(y)|2V2(αc,−αc) + |A(y)|2 Vgm. (4.14)

This result for the no-slip case includes formally the simpler stress-free case if one
sets Ψ2 = M2 = Vgm = 0.

After projection of (2.2) onto the adjoint mode U1(αc+q) as shown in the Appendix,
multiplication by exp[i(qy + ωct)] and integration, the linear terms of (2.2) yield

∂tA(y) =

∫
V(0)

dqÂ(αc + q)[σ(αc + q, R) + iωc] exp(iqy)

with

σ(αc + q, R) = 〈U1(αc + q),LR · V1(αc + q)〉
∼ −iωc + σ0(1 + is)ε− ivgq − β(1 + ib)q2 (4.15)

for small q and ε, where vg = ∂αω is the group velocity of the waves at α = αc, and
σ0 and β are positive numbers. Using classical Fourier-transform rules, one obtains

∂tA(y) ∼ σ0(1 + is)εA(y)− vg∂yA(y) + β(1 + ib)∂2
yA(y). (4.16)

Eventually the same treatment of the resonant nonlinear terms N2(W |V⊥)+N2(W
∗|V⊥)

in (2.2) yields at lowest order the terms

−(γr + iγi)|A(y)|2A(y)− (δr + iδi)|A(y)|2 A(y) (4.17)

with

γr + iγi = 〈U1(αc),N2(V1(αc)|V2(αc,−αc)) + N2(V1(−αc)|V2(αc, αc))〉, (4.18)

δr + iδi = 〈U1(αc),N2(V1(αc)|Vgm)〉. (4.19)

Adding (4.16) and (4.17) we obtain the envelope equation

∂tA(y) + vg∂yA(y) = σ0(1 + is)εA(y) + β(1 + ib)∂2
yA(y)− (γr + iγi)|A(y)|2A(y)

−(δr + iδi)|A(y)|2 A(y). (4.20)
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The group velocity term ∝ vg can be removed by changing to a moving frame.
Moreover the introduction of slow scales according to t′ = εt, y′ = ε1/2(y − vgt) and
of a normalized amplitude according to A = ε1/2A′ proves that all the other terms
summed in (4.20) are of the same order ε3/2.

In the stress-free case, where all the above calculations can be done analytically,
we have δr = δi = 0, and thus recover the standard envelope equation (4.1) or
(4.3) of HB97. In the no-slip case we must carry out numerical calculations, either
using superpositions of modes in exp(λx), or employing the Galerkin scheme (§ 5). The
global mean-flow coefficient δr+iδi is non-vanishing once η 6= 0 and the corresponding
nonlinear term introduces a global (or non-local) coupling. To our knowledge, such
modified forms of the Ginzburg–Landau equation have only been considered in
the case of a stationary bifurcation, with purely real coefficients in (4.20) (Hall 1984;
Elmer 1988), or in the case of non-dissipative waves, with purely imaginary coefficients
(Pierce & Knobloch 1994). In our more general case of complex coefficients, we shall
see that the global-coupling term gives rise to rather special stability properties. First,
however, the sign and the magnitude of the coefficients of (4.20) must be specified, as
we shall do through evaluation of the structure of the spatially periodic Rossby wave
in the neighbourhood of the onset of convection.

4.2. Structure of the critical wave in the no-slip case

The weakly nonlinear solution of (2.2) with the critical wavenumber αc is obtained

as the special case Â(αc + k) = A0δ(k) in the wave packet expansion (4.1), which thus
reduces to W = A0V1(αc). At leading order this corresponds naturally to a sinusoidal
wave.

The quadratic order yields, according to (4.14),

V⊥ = [A2
0V2(αc, αc) exp(−2iωct) + c.c.] + |A0|2[V2(αc,−αc) + Vgm]. (4.21)

The mode V2(αc,−αc) includes an antisymmetric temperature profile Θ2(x) that de-
scribes the enhancement of the heat transport due to convection, as measured by the
Nusselt number

Nu = 1 + P∂xθ|x=−1/2 = 1 + P |A0|2Θ ′2(− 1
2
). (4.22)

For η = 0, Θ2(x) generated by the heat-advection terms P v · ∇θ in the heat equation
(2.2b) is proportional to P . Because A0 tends to a finite value as P → 0 in the no-slip
case, this explains why Nu decreases rapidly in proportion to P 2 for P 6 1 and
η = 0 (figure 3). On the other hand, the stress-free case value of the reduced Nusselt
number, (Nu− 1)/ε = 2 (equation (3.14) of BO86), is recovered at quite large η.

More specific for our rotating system is the generation of the mean flow

u(x) = vy(x, y, t) = −∂xψ2 = |A0|2[−Ψ ′2(x) +M2(1− 4x2)] = |A0|2u2(x), (4.23)

with a typical profile shown in figure 4(a). Since u′(±1/2) = 0 according to (4.11), no
torque is exerted on the boundaries of the annular layer. We note also that in the
stress-free case a mean flow appears only at the quartic order (see equation (3.10)
of BO86; see also the large-η asymptotic results of Abdulrahman et al. 2000) and
presents a different profile (it is prograde in the interior of the layer). There is a
connection between the quadratic mean flow and the geometry of the separatrices
between convection cells in the linear wave flow, defined by the equation

ψ1 = 0, i.e. Ψ1r(x; αc) cos(αcy)−Ψ1i(x; αc) sin(αcy) = 0.

Indeed by differentiation of this equation, multiplication by Ψ1r(x) sin(αcy) and
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Figure 3. (a) The reduced Nusselt number deduced from (4.22), (4.28) is plotted vs. η for four
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ε = 1 according to (4.23), (4.28). The thin (resp. dashed) line shows the contribution of the term
∝ Ψ2(x) (resp. 1− 4x2) to this profile. Note that in a more general case where A(y) would depend
on y the contribution of the term ∝ Ψ2(x) would correspond to the ‘modulated’ mean flow, and
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discussion. (b) For four different values of P as indicated on the right, the ratio of the mid-layer
mean-flow amplitude at ε = 1 vs. the maximum wave-flow amplitude at ε = 1 equation (4.30) is
plotted as a function of η.

simplification by sin2(αcy), one obtains that, along a separatrix with equation y(x),

αc|Ψ1(x)|2 dy = [Ψ ′1r(x)Ψ1i(x)−Ψ1r(x)Ψ ′1i(x)] dx. (4.24)

On the other hand (4.6) and (4.7) lead to

u′′2(x) = S(x) = 2αc∂x[Ψ
′
1r(x)Ψ1i(x)−Ψ1r(x)Ψ ′1i(x)], (4.25a)

i.e.

u′2(x) = 2αc[Ψ
′
1r(x)Ψ1i(x)−Ψ1r(x)Ψ ′1i(x)] = 2α2

c |Ψ1(x)|2y′(x) (4.25b)

because of the boundary conditions u′2 = Ψ1 = 0 at x = ±1/2. This relationship
between the mean flow and the slope of the separatrices y′(x), which indicates a ‘tilt’
of the convection cells, is illustrated in figure 5.
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Figure 5. For P = 0.0247, η = 1000: (a) The lines of constant streamfunction of the linear wave
mode, with the thick lines indicating the separatrices y(x) defined by ψ1 = 0. (b) The relation with
the mean flow (4.25) is illustrated by a dotted line for the factor |Ψ1(x)|2, a solid line for the factor
y′(x) and a dashed line for the result u′2(x).

The value of the amplitude A0 is controlled by the balance between the linear and
nonlinear terms in (4.20), which reduces here to the amplitude equation

∂tA0 = σ0(1 + is)εA0− γ(1 + ic)|A0|2A0 with γ(1 + ic) = γr + iγi + δr + iδi. (4.26)

The saturation coefficient

γ = γr + δr (4.27)

is always positive, indicating a supercritical bifurcation, i.e.

|A0(ε)| =
√
σ0ε/γ. (4.28)

At large P , the global mean-flow contribution δr to the saturation coefficient (4.27)
is negligible, and the saturation arises from the advection of the mean temperature
profile Θ2(x), i.e. from the contribution of Pvx∂xΘ2 to γr . This contribution increases
with increasing P and explains the small convection velocities at large P (figure 3) as
measured by the Reynolds number

Re = max vx/
√
ε = 2αc|A0(1)| = 2αc

√
σ0/γ. (4.29)

The value in the stress-free case for large η deduced from (3.1) and (3.7) of BO86,

Re ∼ 23/231/2P−1η
1/3
p , is recovered only at rather large η, especially for small P . The

smallness of |A0(1)| at large P also implies that the relative strength of the mean flow

u(0)/max vx(ε = 1) = |A0(1)|/(2αc)u2(0) = Re/(4α2
c)u2(0) (4.30)

according to (4.23) decreases with increasing P as shown in figure 4(b).
At small P (and not too small η), the global mean-flow contribution δr to the

saturation coefficient (4.27) dominates the γr term which can even become negative,
see the corresponding parameter region in figure 7. There the γr term is dominated by
the contribution due to the ‘modulated’ mean-flow ∝ Ψ2(x) in (4.18), which adds to
the excitation of the prograde-travelling waves through the advection of these waves
in the regions where this mean flow is also prograde, i.e. near the cylindrical walls
(see figure 4a). This creates a local minimum of γ around η ' 1000 which is visible
in the form of bumps on the curves for P = 0.006 and P = 0.0247 in figure 3.

The full complex solution of (4.26) reads

A0(ε) =
√
σ0ε/γ exp(−i∆ωt) with the frequency shift ∆ω = (c− s)σ0ε, (4.31)

which contains a linear term proportional to s (originating from (4.15)) as well as a
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Figure 6. The relative frequency shift deduced from (4.31) is plotted vs. η for four different values
of P as in figure 4(b).

nonlinear term proportional to

c = (γi + δi)/(γr + δr). (4.32)

In sharp contrast to the stress-free case, where one finds that ∆ω = 0 at this order
(since s = c = γi/γr), there exists a strong slowing down of the waves in the no-
slip case for small P and intermediate η (figure 6), caused by the global mean-flow
term ∝ δi (one has δi < 0, |δi| � |γi| and |s| � |c|). Indeed, through advection the
retrograde mean flow slows down the prograde propagation of the wave.

4.3. General stability analysis of the critical wave

Near onset the critical wave may be destabilized by sideband modulational instabilities
corresponding to growing modes with wavenumbers αc ± p with p � αc. Using the
ansatz

Â(αc+q) = A0δ(q)+a+δ(q−p)+a−δ(q+p), i.e. A(y) = A0+a+ exp(ipy)+a− exp(−ipy)

with infinitesimal amplitudes a±, we obtain after introduction into (4.20) a 2 × 2
system describing the evolution of the amplitudes a+ and a−, with the growth rates

Re(σ±) = −βp2 − γrσ0ε

γ
± 1

γ
Re[
√

(γrσ0ε)2 − 2βbγiγσ0εp2 − (bβγp2)2]. (4.33)

Naturally the global mean-flow coefficients δr and δi do not appear since they do
not control the dynamics of wave modulations; on the contrary the sign of the
‘modulated’ contribution γr to the saturation coefficient γ = γr + δr appears to be
crucial.

In the case γr > 0 where the ‘modulated flows’ saturate, one finds for the maximum
growth rate

Re(σ+) = −β(1 + bγi/γr)p
2 + O(p4). (4.34)

Hence a criterion similar to the Newell criterion (Newell 1974) is recovered:

critical wave is unstable⇐⇒ 1 + bγi/γr < 0. (4.35)

In the classical case δr = δi = 0 (no global-coupling term in (4.20)), where γr > 0 is
assumed to ensure supercriticality and the nonlinear phase shift (4.32) reduces to
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c = γi/γr , the criterion (4.35) reduces to the classical Newell criterion determined by
the sign of 1 + bc. This simplification no longer holds in the case δr + iδi 6= 0.

In the case γr = 0 where the ‘modulated flows’ do not feed back onto the amplitudes,
the sign of the product bγi is decisive. For bγi > 0 the maximum growth rate is

Re(σ+) = Re(σ−) = −βp2 + O(p4), i.e. the critical wave is stable. (4.36)

On the other hand, for bγi < 0 the maximum growth rate becomes

Re(σ+) =

(−2βbγiσ0ε

γ

)1/2

|p|+ O(p2), i.e. the critical wave is unstable. (4.37)

Note that the growth rate is non-analytic in the limit p→ 0.
Finally, in the case γr < 0 where the ‘modulated flows’ exert a positive feedback,

Re(σ+) = −2σ0εγr

γ
+ β

(
b
γi

γr
− 1

)
p2 + O(p4), (4.38)

i.e. the critical wave is always unstable. Note that for p→ 0, Re(σ−) tends to a finite
positive limit. This corresponds to an ‘amplitude instability’ which is linked to the
fact that the bifurcation without the global Poiseuille mean flow would be subcritical.

4.4. Stability results for the rotating annulus model

In the stress-free case where the global mean-flow term vanishes (δr = δi = 0), the
stability properties of the critical wave near onset are simply ruled by the Newell
criterion (4.35), and the results of HB97 are recovered. As shown in their figure 6,
there exists for small P and intermediate η a zone of instability at onset, which is
caused by the property that in (4.35) b attains large negative values whereas γi/γr is
of the order of +1.

In the no-slip case, using the modified Newell criterion (4.35), we find the stability
diagram shown in figure 7. Two different unstable regions can be distinguished.
Region I is analogous to the region found in the stress-free case (figure 6 of HB97).
Here b is negative and γi is positive; except for very low P , γr is small but positive,
thus γi/γr > 0. However this region I extends only up to P ' 0.12, whereas in the
stress-free case unstable waves at onset may exist up to P ' 0.20. For intermediate
values of η, the no-slip boundaries thus have a stabilizing influence. For P 6 0.026,
there appears a region where γr < 0. A ‘strong’ instability of the waves occurs there
with perturbation growth rates of the form (4.38), where the coefficient of the p2 term
is positive since γr stays small. Note that, in contrast to the stress-free case, the lower
boundary of region I approaches a finite value η = 254 for P → 0.

An unexpected result is the existence of the unstable region II at high η, which is
generated by positive values of b and γr and negative values of γi. This region, which
has no analogue in the stress-free case, cannot connect with region I where b < 0
and γi > 0. The lower boundary of region I and the upper boundary of region II
present a singular behaviour in the limit P → 0. Note that in the limit η → +∞ the
waves become stable as expected from the results in the stress-free case. But η must
be increased rapidly with decreasing P in order that this stable regime is attained.

Numerical simulations of (4.20) in the unstable regimes shown in figure 7 demon-
strate a transition to modulated waves for not too large periodicity intervals L, and
to modulated waves with ‘phase’ or ‘defect’ turbulence for large L. Once the pertur-
bations have grown the dynamics of (4.20) thus seems to be qualitatively the same
as in the case of the standard Ginzburg–Landau equation (see e.g. Dangelmayr &
Kramer 1998).
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Figure 7. The thick line defined by the modified Newell criterion (4.35), bγi/γr = −1, separates the
white region where the critical wave is stable at onset from the shaded regions where it is unstable
at onset. The thin line shows the boundary γr = 0.

5. Fully nonlinear dynamics
The weakly nonlinear analysis presented in the previous section is only valid

in the small-amplitude regime ε � 1. In order to solve numerically the evolution
equations (2.2) for larger ε, we use the Galerkin method.

To resolve the sharp boundary layers that exist at small P (§ 3.3), we use for the
nonlinear waves the ansatz

ψ =
∑
m,n

amnCn(x) exp[im(αy−ωt)] +F(x), θ =
∑
m,n

bmnSn(x) exp[im(αy−ωt)], (5.1)

where the Cn and Sn are combinations of Tchebyshev polynomials satisfying the
boundary conditions Cn(±1/2) = C ′n(±1/2) = Sn(±1/2) = 0. Since the mean-flow
part of the streamfunction

ψ(x) =
∑
n

a0nCn(x) + F(x)

must satisfy the global equation (2.4) and the boundary conditions deduced from
(2.3b), we find for the global mean flow, in analogy to the derivation in § 4.1,

F(x) = −1

8

∑
n

a0n〈C ′′′n (x)〉(4x3/3− x), (5.2)

which is equivalent to equation (2.6c) of Schnaubelt & Busse (1992). The series in
(5.1) are truncated with

1 6 n 6 Nx, −Ny 6 m 6 Ny. (5.3)

After introducing the representation (5.1) in (2.2) and projecting the latter onto the
system of expansion functions, we obtain a nonlinear system of equations for the
coefficients amn, bmn, which can be solved with a Newton–Raphson method. The
arbitrary phase of the solution is fixed through the choice Re(a11) = 0, to avoid a
numerical drift of the waves and to provide an equation determining the frequency
ω. The convergence of the computations is tested by the requirement that the Nusselt
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number and the frequency change by less than 2% when Nx and Ny are replaced by
Nx − 2 and Ny − 2.

To test the stability of the nonlinear waves (5.1), infinitesimal disturbances of the
form

ψ̃ =
∑
m,n

ãmnCn(x) exp[im(αy − ωt)]W̃ , θ̃ =
∑
m,n

b̃mnSn(x) exp[im(αy − ωt)]W̃ , (5.4)

are superimposed with W̃ = exp(ipy+σ̃t) where p 6= 0 is the modulation wavenumber.
The solution of the linearized equations for the unknowns ãmn and b̃mn yields a finite
spectrum of eigenvalues {σ̃}. Because of the symmetry of the nonlinear wave (5.1),
for which amn = bmn = 0 when m + n is odd, the disturbances (5.4) can be separated
into two classes: the even disturbances for which

ãmn = b̃mn = 0 for m+ n = odd (5.5)

holds, and the odd disturbances with

ãmn = b̃mn = 0 for m+ n = even, (5.6)

where it should be mentioned that Cn and Sn are changed by the factor (−1)n−1 when
x is replaced by −x. The wave (5.1) is unstable once a solution of the form (5.4) with
positive growth rate Re(σ̃) exists; a classification of the possible instabilities has been
given in Schnaubelt & Busse (1992) and in HB97.

Using stress-free boundary conditions, HB97 have predicted (their figure 4) that
for small Prandtl numbers the region of sideband instability at onset (analogous
to our region I figure 7) extends into the nonlinear regime. Therefore modulated
waves are expected to be observed at small P , intermediate η and not too large
R (§ 6 of HB97). At higher R, owing to an odd-mode short-wavelength instability
called the resonance instability, amplitude vacillations are expected in the stress-free
case, followed by a chaotic convection state (§ 7 of HB97). These predictions have
motivated the experimental work of Jaletzky (1999), who has investigated convection
in a rotating cylindrical annulus filled with mercury. Although the Prandtl number
is P = 0.0247 in this case, in all experiments at various R and η values, only pure
monofrequency waves have been observed.

An important result of our no-slip Galerkin computations is that, at intermediate
values of η, the waves typically restabilize at sufficiently high R with respect to
both the sideband and the resonance instabilities. As seen in figure 8, this process is
associated with a sudden upturn of the Nusselt number vs. Rayleigh number curve,
which becomes S-shaped for large η. In this latter hysteretic case, where two turning
points appear on the Nusselt number vs. Rayleigh number curve, we follow the
solution branch in the numerical scheme by treating R as variable and a11 as control
parameter. A typical stability diagram is shown on figure 9. With increasing R, the
resonance instability typically sets in when the first turning point is approached. The
restabilization against both the resonance and sideband instabilities is also connected
with the S-shape, since it only happens above the second turning point. These results
are in line with Jaletzky’s experiments: because of the experimental protocol, the
scanned values of R and η are related by R ∝ η2, and because of a sufficiently large
signal to noise ratio only the stable region (thick lines in figure 8) could be probed.

The S-shaped Nu(R) dependence becomes more pronounced as the Prandtl number
decreases. As shown in figure 10, nonlinear convection can even be observed for
R < Rc in spite of the supercritical character of the first bifurcation. When P
approaches zero, arbitrarily large hysteresis gaps are obtained at intermediate values
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Figure 8. Nusselt number vs. Rayleigh number for the nonlinear wave with the critical wavenumber
αc(η) for P = 0.0247, η = 0, 1500, 2500, 3400, 4300, 6000, 7500 from left to right. The thick lines
denote stable waves, the thick dashed lines indicate waves unstable to sideband instabilities, the thin
lines indicate waves unstable to the resonance instability, and the thin dashed lines indicate waves
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Figure 9. Region of instability (shaded) of the waves in the wavenumber–Rayleigh number plane
for P = 0.0247, η = 3800. The thin dashed line denotes the neutral curve R0(α), the thick line
describes the upper bound of the sideband instability domain, and the thick dashed lines indicate
the boundaries of the resonance instability domain. For α > 3.7, the hysteresis domain associated
with the S-shapes as seen on figure 8 is indicated with the thin lines. For smaller α the S-shape
disappears; here the thin line indicates where ∂Nu/∂R reaches its maximum value.

of η. A salient feature is the property that, for very small P , the nonlinear waves
restabilize both against the sideband and resonance instabilities immediately after the
second turning point, which suggests that it corresponds to a saddle-node bifurcation.

6. Concluding remarks
An important result is the stabilizing influence of the rigid boundaries in the

nonlinear regime of convection in a rotating cylindrical annulus at small Prandtl
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Figure 10. Reduced Nusselt number (a) and frequency (b) of the nonlinear wave of critical
wavenumber for P = 0.006, η = 4300. The stability properties of this wave are indicated through
the use of different lines as in figure 8.

numbers as shown on figure 9. A comparison with figure 6e of Elmer (1988) suggests
that this restabilization is related to the mean-flow global-coupling effect that we
have demonstrated. The hysteretic transition expected near onset at intermediate
values of η (figure 10) is another interesting feature which could eventually be studied
experimentally if more precise techniques for measurements of small amplitudes of
convection are used. The currently available experimental data (Jaletzky 1999) do not
show this feature, but are in agreement with the theory otherwise.

The global-coupling role of mean flows has been taken into account only implicitly
up to now, see e.g. Clever & Busse (1989) or Clune & Knobloch (1993), where
on the other hand the alternative of a mean pressure gradient in the direction of
the mean flow has also been considered. As an example of another system where
the envelope equation (4.20) should provide the appropriate theoretical description,
we mention the case of rotating Rayleigh–Bénard convection as studied by Liu &
Ecke (1997). They used an envelope equation without the global mean-flow coupling
term to describe their experimental observations, and found good agreement. This is
probably explained by the fact that the Prandtl number was relatively large in the
experiment, P = 6.3, while mean-flow effects are important only at small Prandtl
numbers (figure 4b). We expect that the same experiment carried out with a fluid of
small Prandtl number will require an extension of the envelope equation to the form
(4.20); accordingly the related theoretical results of Kuo & Cross (1993) or Hecke &
Saarloos (1997) should also be revisited.

In order to obtain a closer analogy with the case of spherical convection, curvature
effects can be included in the rotating cylindrical annulus model by a modification of
the η term in (2.2a), see e.g. BO86, Busse & Hood (1982) (alternately one may consider
a large gap and use cylindrical operators as in Pino, Mercader & Net (2000)). The
effect of a small curvature is generally to introduce a small antisymmetric component
of the linear streamfunction and hence an antisymmetric mean flow (Busse & Hood
1982). With rigid boundaries, the weakly nonlinear scheme of § 4.1 is still valid, except
for the lack of x 7→ −x symmetry, i.e. now 〈Ψ ′′′2 (x)〉 6= 2Ψ ′′2 (1/2). Accordingly u′2 no
longer vanishes at the boundaries, and equation (4.25) linking the quadratic mean
flow with the slope of the linear convection cells generalizes to

u′2(x) = 2α2
c[|Ψ1(x)|2y′(x)− 〈|Ψ1(x)|2y′(x)〉] (6.1)

where we have used 〈u′2(x)〉 = 0. A reinvestigation of the strongly nonlinear dynamics
in this case and for very low Prandtl numbers would be interesting.
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Appendix. Projection technique for the envelope equation
The Hermitian scalar product in V -space is defined by

〈U,V 〉 =
1

L

∫ L/2

−L/2
dy

∫ 1/2

−1/2

µ(x) dxU∗(x, y) · V (x, y) (A 1)

with µ(x) = 1 (resp. 2/π/
√

1− (2x)2) if superpositions of modes in exp(λx) (resp. the
Tchebyshev–Galerkin code) are used for the calculations. Correspondingly the adjoint
linear modes are defined by

iω(α) D† ·U1(α) = L†R(α) ·U1(α) (A 2)

together with the normalization condition

∀α, α′, 〈U1(α), D · V1(α
′)〉 = δ(α− α′). (A 3)
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